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Living polymerization techniques1 allow the synthesis of
polymers with predictable molecular weights and narrow
molecular weight distributions, end-functionalized polymers and
well-defined block copolymers. While intense efforts have
recently focused on development of homogeneous single-site,
early metal d0 and d0fn catalysts for polymerization of ethylene
and R-olefins (particularly propylene),2 rapid chain transfer
processes in these systems have limited their use as living
polymerization catalysts. The living polymerization ofR-olefins
has been achieved only in rare instances and at very low temp-
eratures.3,4 We describe here the development of a procedure
for living polymerization ofR-olefins based on recently reported
NiII-R-diimine catalysts5 and application of this procedure to
the synthesis of diblock and triblock poly(R-olefins).6
As previously reported, catalysts derived from [ArNdC-

(R)sC(R)dNAr]NiBr 2 (1) plus methylaluminoxane (MAO) are
quite active for the polymerization ofR-olefins in toluene (eq
1).5 Additional examples of polymerization at 23°C using

catalyst precursors1a and1b are shown in Table 1, entries 1,
3, 7-9, 11, 13, and 15. Polymerization of propylene (1 atm)
yields polypropylene with molecular weight distribution (MWD)
of 1.44 (entry 1) for1a/MMAO7 and 1.59 (entry 11) for1b/
MAO. Polymerization of 1-hexene (>2 M in toluene) gives
poly(1-hexene) withMw/Mn values in the range of 1.4-1.8
(entries 6-8). While reasonably narrow, these molecular weight

distributions suggest chain transfer is significant under these
conditions. However, when polymerizations are carried out at
somewhat lower temperature (-10 °C) and low monomer
concentrations (<1 M), poly(R-olefins) are produced with very
narrow molar mass distributions suggesting a living polymer-
ization.8 For example, polymerization of propylene with1a/
MMAO at -10 °C (1 atm, 60 min) yields polypropylene (Mn

) 161 000) withMw/Mn of 1.13 while polymerization of
1-hexene (0.8 M,-10 °C) yields poly(1-hexene) (Mn ) 44 000)
with Mw/Mn ) 1.09. A GPC trace of the poly(1-hexene)
prepared under these conditions is shown in Figure 1.
To further confirm living polymerization,Mn andMw/Mn

values were monitored as a function of conversion for polym-
erization of propylene with1a/MMAO at -10 °C. As shown
in Figure 2, number average molecular weight increases linearly
with time over a broad molecular weight range (25K to 225K)
while the molecular weight distribution remains low (ca. 1.1),
clearly indicative of a living polymerization.1

During polymerization, a significant fraction ofR-olefin
insertions occur in a 2,1 fashion. Metal migration to the terminal
carbon and subsequent insertion results in enchainment of
R-olefins in a 1,ω fashion (eq 2).5,9 This process has several

consequences. The resulting polymers contain fewer branches
than expected from sequential 1,2-insertions10 and linear,
unbranched segments can be incorporated along the main chain
resulting in crystalline domains. The length of the linear
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Figure 1. GPC trace of poly(1-hexene) prepared by complex1a +
MAO at -10 °C.

Figure 2. Plot of Mn andMw/Mn as a function of reaction time for
propylene polymerization at-10 °C.
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segments increases with the chain length of theR-olefin and
results in increasing melt transition temperatures in these
semicrystalline polymers.11 Furthermore, the ratio of 1,2- versus
2,1-insertion is sensitive to the nature of theR-diimine ligand.
Catalyst1b/MAO exhibits a higher fraction of 2,1-insertions
than 1a/MAO. Poly(1-octadecene) produced by1b/MAO at
23 °C (entry 15) exhibits fewer branches (33 branches/1000
carbon atoms) and a higherTm (78 °C) than the polymer
produced by1a/MMAO (entry 9, 45 branches/1000 carbon
atoms,Tm ) 56 °C).
The living nature of these polymerizations, coupled with the

variation in polyolefin properties as a function ofR-olefin chain
length and ligand structure, permits the synthesis of a variety
of unique diblock and triblock polymers. Several examples are
shown in Table 2. Sequential monomer addition of propylene
and 1-hexene at-15 °C to catalyst1a/MMAO results in
polypropylene-b-poly(1-hexene) with a MWD of 1.13. An
overlay of the monomodal GPC elution curves for the polypro-
pylene A block (Mn ) 85 000,Mw/Mn ) 1.12) and the final
polypropylene-b-poly(1-hexene) A-B diblock (Mn ) 163 000,
Mw/Mn ) 1.13) clearly shows a shift to shorter retention times,
indicating the clean preparation of a diblock polymer under these
conditions (see Supporting Information).
The preparation ofR-olefin based A-B-A triblock copolymers

where the semicrystalline A block is based on a long-chain
R-olefin and the amorphous B block is derived from propylene
provides a methodology for the synthesis of elastomeric
polyolefins. For example, treatment of catalyst1a/MMAO with
1-octadecene at-10 °C for 95 min and then addition of 1 atm
of propylene followed by the formation of a second block of

poly(1-octadecene) results in the formation of a well-defined
high molecular weight elastomeric A-B-A triblock copolymer
(see Table 2, entry 4).12 An analogous preparation using catalyst
precursor1b+ MMAO results in a triblock copolymer in which
the A blocks have a melt transition temperature of 69°C,
illustrating the increase in 1,ω-insertion for this catalyst system
(entry 6). These triblock polymers are highly elastic and
qualitatively show good elastic recovery.
In summary, we have developed procedures for using

R-diimine NiII-based catalysts for the living polymerization of
R-olefins. In addition, this work has been extended to the
development of a new synthetic strategy for the preparation of
near monodisperse elastomericR-olefin-based block copolymers.
The microstructures of these polymers are unique, and they
exhibit physical properties unlike those of poly(R-olefins) made
by early metal catalysts. Details of the physical properties of
these polymers along with additional strategies for preparation
of elastomeric polyolefins will be the subject of a future paper.
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(11) Incorporation of linear segments also lowersTg relative to atactic
polymers prepared from Ziegler-Natta catalysts. For example, “normal”
atactic polypropylene exhibits aTg of -18 °C, whereas theTg of
polypropylene prepared from these catalysts ranges from-16 to-55 °C.

(12) Since 1-octadecene is not removed during formation of the B block,
this block is actually a random polypropylene/octadecene block. Propylene
is much more reactive than 1-octadecene thus a much higher fraction of
propylene relative to 1-octadecene is incorporated into the polymer. This
random block exhibits a lowTm (see Table 2) whereas polypropylene
prepared under these conditions exhibits noTm (see Table 1).

Table 1. R-Olefin Polymerization Data

reaction conditions polymer properties

entry catalysta monomere time (min) temp (°C) TOF (per h) 10-3Mn
b Mw/Mn branches/1000 Cc therm anal. (°C)d

1 1a/MMAO P (1atm) 60 23 3000 190 1.44 272 -24 (Tg)
2 1a/MMAO P (1atm) 60 -10 2500 160 1.13 297 -16 (Tg)
3 1a/MMAO H (0.8 M) 60 23 1400 92 1.55 120 -57 (Tg), -17 (Tm)
4 1a/MMAO H (0.8 M) 60 -10 560 36 1.18 145 -49 (Tg)
5 1a/MAO H (0.8 M) 60 -10 530 44 1.09 135 -51 (Tg)
6 1a/MAO H (6.4 M) 30 -10 1400 91 1.42 160 -44 (Tg)
7 1a/MAO H (3.2 M) 30 23 2800 84 1.54 126 -52 (Tg)
8 1a/MAO H (6.0 M) 30 23 2500 71 1.80 125 -51 (Tg)
9 1a/MMAO O (0.3 M) 60 23 300 87 1.20 45 56 (Tm)
10 1a/MMAO O (0.3 M) 60 0 180 45 1.09 50 33 (Tm)
11 1b/MAO P (1atm) 60 23 1300 60 1.59 159 -55 (Tg)
12 1b/MAO P (1atm) 60 -10 660 36 1.27 214 -50 (Tg)
13 1b/MAO H (0.8M) 60 23 1000 70 1.62 73 -49 (Tg), 34 (Tm)
14 1b/MAO H (0.8M) 60 -10 260 26 1.15 118 -61 (Tg)
15 1b/MAO O (0.3 M) 60 23 310 68 1.22 33 78 (Tm)
16 1b/MAO O (0.3 M) 120 -10 25 19 1.14 39 32 (Tm), 60 (Tm)f

aNi complex (0.017 mmol) activated with 100 equiv of MAO or MMAO; toluene (entries 1-6 and 9-10 total volume toluene and monomer
equals 50 mL; entries 7-8 and 11-16 total volume toluene and monomer equals 100 mL).bMolecular weight data was determined by GPC vs
polystyrene standards.c Total branching was determined by1H NMR spectroscopy (accurate toca. 2%). d Tm andTg were determined by differential
scanning calorimetry (DSC).ePropylene (P), 1-hexene (H), and 1-octadecene (O).f Two melt transitions have been verified for poly(1-octadecene)
by dynamic mechanical analysis.

Table 2. Synthesis ofR-Olefin Block Polymers (A-B and A-B-A)

entry catalystaprecursor block polymerb reaction time (block-min) 10-3Mn
c Mw/Mn therm anal. (°C)d

1 1a P-b-H A-30/B-30 159 1.11 -18 (Tg)
2 1a P-b-H A-30/B-60 163 1.13 -42 (Tg), -25 (Tg)
3 1a O-b-P-r-O-b-O A-40/B-20/A-40 60 1.09 9 (Tm), 37(Tm)
4 1a O-b-P-r-O-b-O A-95/B-60/A-150 253 1.17 -11 (Tm), 40 (Tm), -38 (Tg)
5 1b O-b-P-r-O-b-O A-130/B-30/A-140 56 1.24 8 (Tm), 53 (Tm)
6 1b O-b-P-r-O-b-O A-250/B-60/A-260 112 1.43 0 (Tm), 69 (Tm), -52 (Tg)

aComplex (0.017 mmol) activated with 100 equiv of MMAO; toluene; entries 1 and 2 temperature is-15 °C, entries 3-6 temperature is-10
°C. b Propylene (P), 1-hexene (H), and 1-octadecene (O).cMolecular weight data was determined by GPC vs polystyrene standards.d Tm andTg
were determined by differential scanning calorimetry (DSC).
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